Staleness-based Subgraph Sampling for Training GNNs on Large-Scale Graphs

NPGML

@NeurIPS 2025

Limei Wang^{1*}, Si Zhang¹, Hanqing Zeng¹, Hao Wu¹, Zhigang Hua¹, Kaveh Hassani¹, Andrey Malevich¹⁺, Bo Long¹⁺, and Shuiwang Ji²

- ¹ Meta, ² Texas A&M University
- * Worked done when the author was a PhD student at Texas A&M University and an intern at Meta

 † Worked done when the author at Meta

TL; DR: Design a simple yet effective subgraph sampling method for GNNs with historical embeddings [1][2][3]

- Based on theoretical analysis of the approximation error caused by using historical embeddings for out-of-batch neighbors
- Better performance compared to the default sampling method (as in Cluster-GCN[4])
- Do not bring additional computation overhead due to efficient staleness score calculation, improved re-sampling strategy,
 and faster training converge

Background - Training GNNs on large-scale graphs

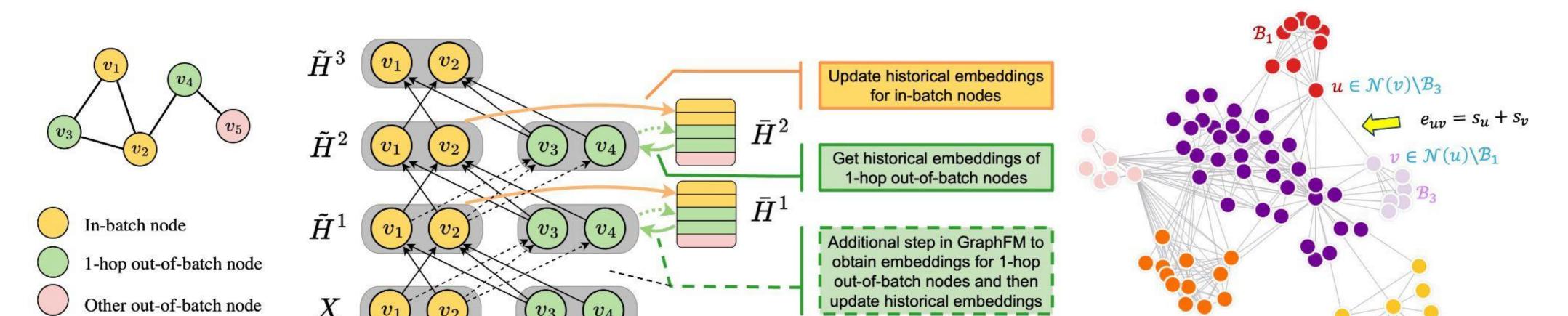
- Mini-batch training is necessary
- Sampling-based methods are commonly used (our focus in this paper), basically we sample a subgraph as a mini-batch
 - There may (e.g. node/layer-wise sampling) or may not (e.g. cluster-based) be overlapping nodes between different subgraphs
- Another line of work is treating each node as an training example and do mini-batch training with fixed batch size, but each node is attached with fixed-dimensional information [5] (e.g. top-k ppr neighbors, top-k hop aggregated embeddings)

Background - GNNs with historical embeddings

Use historical embeddings for the unsampled neighbors

$$\begin{aligned} h_u^{l+1} &= f_\theta^{l+1} \big(h_u^l, \{h_v^l\}_{v \in \mathcal{N}(u)} \big) \\ &= f_\theta^{l+1} \big(h_u^l, \{h_v^l\}_{v \in \mathcal{N}(u) \cap \mathcal{B}} \cup \{h_v^l\}_{v \in \mathcal{N}(u) \setminus \mathcal{B}} \big) \\ &\approx f_\theta^{l+1} \left(h_u^l, \{h_v^l\}_{v \in \mathcal{N}(u) \cap \mathcal{B}} \cup \{\bar{h}_v^l\}_{v \in \mathcal{N}(u) \setminus \mathcal{B}} \right) \end{aligned}$$

 $v \in \mathcal{N}(u) \setminus \mathcal{B}$: unsampled neighbors $v \in \mathcal{N}(u) \cap \mathcal{B}$: sampled neighbors \bar{h}_v^l : historical embeddings



Example graph

Historical embedding-based methods

Staleness-based subgraph sampling

Method - Staleness-based subgraph sampling

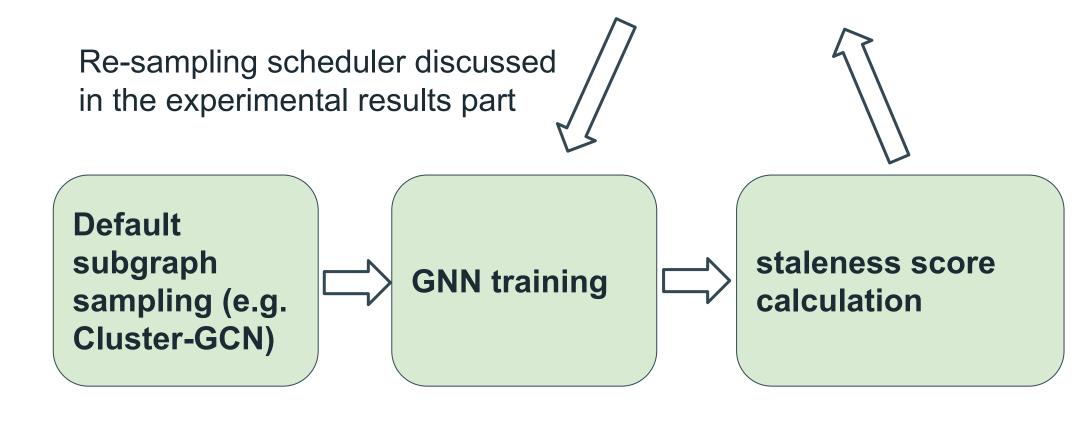
- Minimize the appromization error from using historical embeddings $\|h_u^L \tilde{h}_u^L\|_2^2$
- Equivalent to minimize the weighted sum of the staleness scores for all out-of-batch neighbors $\underset{\mathcal{B}}{\arg\min} \sum_{u \in \mathcal{B}} \sum_{v \in \mathcal{N}(u) \setminus \mathcal{B}} \sum_{\ell} C_v^{\ell} s_v^{\ell}$

where the staleness score $s_v^\ell = \|h_v^\ell - \bar{h}_v^\ell\|$

Considering all M mini-batches, the overall minimization objective is

$$\begin{split} \operatorname*{arg\,min}_{\{\mathcal{B}_1,...,\mathcal{B}_M\}} \sum_{\mathcal{B}_i \in \{\mathcal{B}_1,...,\mathcal{B}_M\}} \sum_{u \in \mathcal{B}_i} \sum_{v \in \mathcal{N}(u) \setminus \mathcal{B}_i} \sum_{\ell} C_v^{\ell} s_v^{\ell} \\ \text{subject to} \quad \mathcal{V} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup ... \cup \mathcal{B}_M \\ \mathcal{B}_i \cap \mathcal{B}_j = \varnothing \quad \text{for all} \quad i \neq j, 1 \leq i, j \leq M \end{split}$$

Equivalent to graph partitioning objective [6] (to the right)



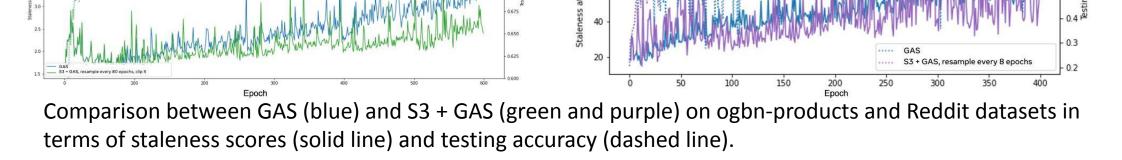
$$\operatorname*{arg\,min}_{\{\mathcal{B}_1,...,\mathcal{B}_M\}} \sum_{u \in \mathcal{B}_i, v \in \mathcal{B}_j, i \neq j, (u,v) \in \mathcal{E}} \sum_{\ell} C_u^{\ell} s_u^{\ell} + C_v^{\ell} s_v^{\ell}$$
 subject to $\mathcal{V} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup ... \cup \mathcal{B}_M$

$$\mathcal{B}_i \cap \mathcal{B}_j = \varnothing$$
 for all $i \neq j, 1 \leq i, j, \leq M$

Flickr & GCNII | ogbn-arxiv & GCNII

Experimental results

# Nodes		89K	230K	717K	169K	2.4M	
# Edges		450K	11.6M	7.9M	1.2M	61.9M	
Method		Flickr	Reddit	Yelp	ogbn-arxiv	ogbn-products	
VR-GCN		0.482 ± 0.003	0.964 ± 0.001	0.640 ± 0.002	_	ī—	
FastGCN		0.504 ± 0.001	0.924 ± 0.001	0.265 ± 0.053	-	_	
GraphSAINT		0.511 ± 0.001	0.966 ± 0.001	0.653 ± 0.003	_	0.791 ± 0.002	
Cluster-GCN		0.481 ± 0.005	0.954 ± 0.001	0.609 ± 0.005	_	0.790 ± 0.003	
SIGN		0.514 ± 0.001	0.968 ± 0.000	0.631 ± 0.003	0.720 ± 0.001	0.776 ± 0.001	
GraphSAGE		0.501 ± 0.013	0.953 ± 0.001	0.634 ± 0.006	0.715 ± 0.003	0.783 ± 0.002	
GCN	GAS	0.534 ± 0.001	0.954 ± 0.000	_	0.715 ± 0.002	0.767 ± 0.002	
	S3 + GAS	0.545 ± 0.001	0.955 ± 0.000	_	0.724 ± 0.002	0.771 ± 0.002	
GCNII	GAS	0.554 ± 0.003	0.967 ± 0.000	0.639 ± 0.003	0.725 ± 0.003	0.770 ± 0.002	
	S3 + GAS	0.567 ± 0.002	0.969 ± 0.001	0.652 ± 0.003	0.735 ± 0.002	0.778 ± 0.002	
GCN	FM	0.535 ± 0.002	0.953 ± 0.000	_	0.715 ± 0.003	0.767 ± 0.001	
	S3 + FM	0.549 ± 0.001	0.952 ± 0.000	_	0.722 ± 0.002	0.770 ± 0.002	
GCNII	FM	0.547 ± 0.003	0.965 ± 0.001	0.641 ± 0.003	0.725 ± 0.003	0.771 ± 0.002	
	S3 + FM	0.566 ± 0.003	0.969 ± 0.000	0.652 ± 0.002	0.733 ± 0.003	0.776 ± 0.001	
GCN	LMC	0.538 ± 0.001	0.954 ± 0.000	_	0.714 ± 0.002	0.765 ± 0.002	
	S3 + LMC	0.541 ± 0.001	0.955 ± 0.000	_	0.721 ± 0.002	0.770 ± 0.002	
GCNII	LMC	0.554 ± 0.005	0.969 ± 0.000	0.647 ± 0.003	0.728 ± 0.002	0.769 ± 0.002	
	S3 + LMC	0.562 ± 0.002	0.969 ± 0.000	0.650 ± 0.003	0.731 ± 0.001	0.773 ± 0.002	



Еþ	ochs	S3 + LMC	213	1.4		180	
Ru	Runtime (s)	LMC	475 304		178		
- Ku		S3 + LMC			175		
30							
Runi	Running time (s)			ogbn-arxiv		ogbn-products	
Train	Training per epoch			1		37	
Stale	Staleness score calculation			0		3	
Re-s	Re-sampling from scratch			3		120	
Re-s	Re-sampling with fast refinement			2		48	

S3 + GAS	No	Resampling	Resample every a fixed number of epochs				pochs
	resampling	once	80	40	20	8	1
Flickr	0.5667	0.5683	0.5729	0.5711	0.5692	0.5715	0.5703
ogbn-arxiv	0.7250	0.7278	0.7291	0.7300	0.7303	0.7294	0.7292
ogbn-products	0.7991	0.8001	0.8030	0.8069	0.8035	_	<u></u>

^[2] H. Yu et al. "GraphFM: Improving large-scale gnn training via feature momentum." ICML 2022

^[3] Z. Shi et al. "LMC: Fast training of GNNs via subgraph sampling with provable convergence." ICLR 2023

^[5] Fu, Dongqi, et al. "VCR-Graphormer: A mini-batch graph transformer via virtual connections." ICLR 2024